การศึกษาคุณภาพน้ำทิ้งจากโรง заводกุ้งทะเล ในจังหวัดภูเก็ต

STUDY ON EFFLUENT QUALITY FROM MARINE SHRIMP HATCHERIES IN PHUKET PROVINCE

โดย

Ornkanya Mengyu
Narin Songseecchan

Phuket Coastal Fisheries Research and Development Center
P.O. Box 2, Phuket 83110
Tel. (076) 219330, 217814
2003
การศึกษาคุณภาพน้ำใกล้จากโรงเรียนกู้ภัยตรล ในจังหวัดภูเก็ต

อรกิจิตร นิยมกิจ และรินทร์ สงเส็กตรร
ศูนย์วิจัยและพัฒนาระเบียบประมงชายฝั่ง ร.อ.ปท. 2 ต.ตลาด อ.ตลาด อ.ภูเก็ต

บทคัดย่อ

ศึกษาคุณภาพน้ำที่ใกล้จากโรงเรียนและอนุบาลกู้ภัยตรล ในจังหวัดภูเก็ต ที่มีการจัดการในการให้อาหาร และการเปลี่ยนย่าน้ำที่แลกล้างกัน จำนวน 3 ห้อง ตั้งแต่เดือนมกราคม-สิงหาคม 2545 พบว่า ระดับของตัวแปรคุณภาพน้ำที่ใกล้จากโรงเรียนทั้ง 3 ห้อง สวนใหญ่เป็นปริมาณน้ำในช่วงที่ไม่ดีมาก ยกเว้นค่าความเต็มของน้ำ ซึ่งมีความปรกฏในปริมาณ ออกซิเจนซั่วผ่านผิวน้ำบนคลองที่ริมคลอง มีค่าเกินมาตรฐานน้ำที่ใกล้จากบ่อเลี้ยงสัตว์น้ำชายฝั่ง ซึ่งกำหนดโดยกรมทรัพยากรคุณภาพน้ำ โดยที่ค่าสูงสุดของตัวแปรคุณภาพน้ำในกลุ่มนี้ไม่เกินค่ามาตรฐานน้ำที่ใกล้จากช่องคลองที่ริมคลองน้ำชายฝั่ง

จากการศึกษา ทำให้ทราบว่าโรงเรียนกู้ภัยตรลอยู่ในจังหวัดภูเก็ต ทั้ง 3 ห้อง ควรมีระบบบ้านน้ำทิ้ง โดยใช้วิธีการผสมสารประกอบการดักกลิ่นและดักฝุ่นทราย และอ่านนี้ จากนั้น ใช้บ้านน้ำเพื่อลดสารประกอบของพืชและสัตว์ในโรงเรียน โดยใช้พื้นที่น้ำ สำหรับ และการผลิตปุ๋ยในบ้านน้ำ และทำน้ำในบ่อปั๊บ 3 วันก่อนปล่อยออกสู่ทะเลส่วนน้ำธรรมชาติ

คำสำคัญ: คุณภาพน้ำ, โรงเรียนกู้ภัยตรล, จังหวัดภูเก็ต
STUDY ON EFFLUENT QUALITY FROM MARINE SHRIMP HATCHERIES IN PHUKET PROVINCE

Ornkanya Mengyu and Narin Songseechan

Phuket Coastal Fisheries Research and Development Center, P.O. Box 2, Phuket 83110, Thailand

ABSTRACT

Study on effluent quality from three marine shrimp hatcheries in Phuket province was conducted from April to August 2002. Nursing management about feeding and changing water of three hatcheries were different. The results showed that almost parameters of effluent were not much variable, excepted salinity. Values of effluent salinity depended on demanding of the farmers who’s bought shrimp fry. Maximum concentrations range of total ammonia, total phosphorus and suspended solids were 1.6157-2.8294 mg N/l, 0.7904 – 0.9750 mg P/l and 70.83 – 94.37 mg/l, respectively. And such 4 parameters of effluent quality were not acceptable when compare to standard values of effluent quality from coastal aquaculture activities by Pollution Control department of Thailand. Whereas BOD₅, pH and total nitrogen were accepted by the standard, the maximum range of such parameters were 9.90 – 10.89 mg/l, 7.92 – 8.21 and 1.8940 – 3.7094 mg N/l, respectively.

The results showing that effluent from the three hatcheries should be treated by combined methods, such as to reduce suspended solids by sand and charcoal filtration. After that, to treat the effluent for decreasing phosphorus compound and nitrogen compound by using water plants, seaweed and put some fishes in effluent treated pond. After three days, to release the treated effluent which acceptable quality to sea.

Key words: Effluent quality, Marine shrimp hatchery, Phuket province
การเปลี่ยนที่สู่กลุ่มต่าง ๆ นับเป็นอุตสาหกรรมทางการเกษตรที่สำคัญค่อนข้างสำคัญของประเทศไทย สามารถทำรายได้ในอันดับหนึ่ง ๆ เท่ากับซาร์ฟีแนะนำการส่งออกสู่ตลาดจีนไปยังตลาดต่างประเทศซึ่งมี อุปทานมากขึ้น โดยเฉพาะที่ฐานที่ส่งไปยังตลาดทุ่งตลาดของประเทศสหภาพยุโรป (EU) ได้วางแผนไปต่าง ๆ
ต่อสังกัดกลุ่มไทย เช่น การตั้งกลุ่มมีการรักษาความสัมพันธ์กับกลุ่มต่างประเทศ ซึ่งได้รับการพิจารณา
จากนักวิจัยและพัฒนาประมงชายฝั่ง ส่วนที่ต้องการส่งออกสู่ตลาดใหม่เพื่อไปยังตลาดต่างประเทศนี้ต้อง มีผลต่อเนื่องที่ทำให้เกิดการลด
พื้นที่การเลี้ยงสุกรเพิ่มเติมที่ทำให้เกิดการนั้นกุ้งจากโรงเพาะพันธุ์และพัฒนาต่อไป
จากมันกุ้งต้องกล่าวถึงว่า กรมประมงจึงได้กำหนดกิจกรรมโรงแรมที่หม่อมธรรมมูล Code of Conduct หรือ CoC ขึ้นใหม่ 22 จังหวัดชายฝั่งทะเล เพื่อเป็นการส่งเสริมการแพทย์และอนามัยสุกรท่องเที่ยว ที่ เป็นมิตรกับสัตว์เลี้ยง และไม่ผิดกฎหมายและมีคุณค่า เช่น จำกัดการจัดกิจกรรม และกำหนดการที่เรียบร้อย
โดยให้กรมการท่องเที่ยวที่มีการจัดกิจกรรมที่ทำให้สุขภาพร่างกายของสัตว์โรคได้รับการคัดแยก
ร่วมโครงการ CoC ด้วย โดยที่มีส่วนยอยไปสู่กลุ่มสัตว์นี้การคัดแยกที่การอ้างอิงของวิทยากร โรงเพาะพันธุ์ต้องมีการ
จัดกิจกรรมที่เป็นไปตามข้อกำหนดในนี้ ซึ่งในการทำให้เป็นรูปแบบที่บังคับขึ้น มีความจำเป็นอย่างยิ่งที่ต้องทราบคุณภาพที่ทำ
จากสัตว์และอนามัยสุกร ที่ทำให้สัตว์มี 반환การคัดแยกแล้วอาจมีผลต่อการจัดการระบบบัตรคิวแตกต่าง
กัน และส่งเสริมการเพาะพันธุ์สัตว์นี้ซึ่งที่นี้ที่นั้น กรมควบคุมภูมิปัญญา (2544) ได้กำหนดค่ามาตรฐานที่นี้ในการ
กำกับดูแลสัตว์ใหม่ได้ส่งเสริมโดยเห็นว่ากรมการควบคุมสัตว์ที่ทำจากต้องจุกุ้งท่องเที่ยว
ในการส่งออกสู่ตลาดต่างประเทศไปยังตลาดต่างประเทศ

สำหรับการควบคุมคุณภาพที่ทำจากโรงเพาะพันธุ์กุ้งหลวงในจังหวัดภูเก็ต นั้นเป็น
ประโยชน์อย่างยิ่งต่อการจัดทำทะเบียนระบบบัตรคิวที่แน่นอนจากโรงเพาะพันธุ์ที่ควบคุมคุณภาพหน้าที่ให้
อยู่ในระดับที่ไม่ส่งผลกระทบต่อแหล่งน้ำธรรมชาติ และเพื่อการประกอบกิจกรรมการเพาะเลี้ยงกุ้งทะเบ
อย่างยั่งยืนของไทยตลอดไป
วัตถุประสงค์

1. เพื่อศึกษาคุณภาพของน้ำที่จากโรงเพาะและอนุบาลกุ้งทะเล ในจังหวัดอุดรทิศ

2. เพื่อจัดข้อมูลคุณภาพน้ำที่จากโรงเพาะและอนุบาลกุ้งทะเล ไปใช้เป็นข้อมูลพื้นฐานในการพัฒนาระบบ

บ้านน้ำที่จากโรงเพาะและอนุบาลกุ้งทะเล

อุปกรณ์และวิธีการศึกษา

1. สถานที่ศึกษา

เลือกโรงเพาะและอนุบาลกุ้งทะเลที่ประกอบการอนุบาลในจังหวัดอุดรทิศ จำนวน 3 แห่ง โดยทั้ง 3

แห่งมีพื้นที่การจัดการอนุบาลกุ้งทะเลที่แตกต่างกัน และมีขนาดบ่ออนุบาลที่ไม่เท่ากัน เพื่อวิเคราะห์การ

ศึกษาเรียบร้อยระหว่างโรงเพาะกุ้งทะเล ดังนี้

1.1 โรงเพาะกุ้งทะเลที่ 1 ต.อู่สนท์ ต.ม่วง จ.อุดรธานี มีพื้นที่ที่ใช้จำนวน 1,000 ตร.

ม. ประกอบด้วย บ่ออนุบาลกุ้งทะเลขนาด 16 ลบ.ม. จำนวน 20 บ่อ บ่อเพาะพันธุ์กุ้งทะเลขนาด 12 ลบ.ม. จำนวน

10 บ่อ บ่ออนุบาลขนาด 30 ลบ.ม. จำนวน 5 บ่อ

- ปริมาณน้ำรั่วเสียในบ่ออนุบาล 12 ลบ.ม. ปล่อยอนุบาลเพื่อสั่ง 100,000 ตัว/น้ำ 1 ลบ.ม.

- ระดับความน้ำในบ่ออนุบาลทั้งหมด 1,000 ตร.ม. ระดับน้ำในบ่ออนุบาล ขนาด 20 ลบ.ม. จำนวน 16 บ่อ บ่อเพาะพันธุ์กุ้งทะเลขนาด 12 ลบ.ม. จำนวน 10 บ่อ บ่ออนุบาลขนาด 30 ลบ.ม. จำนวน 5 บ่อ

- ปริมาณน้ำรั่วเสียในบ่ออนุบาล 16 ลบ.ม. ปล่อยอนุบาลเพื่อสั่ง 100,000 ตัว/น้ำ 1 ลบ.ม.

- ระดับความน้ำในบ่ออนุบาลทั้งหมด 1,000 ตร.ม. ระดับน้ำในบ่ออนุบาล ขนาด 20 ลบ.ม. จำนวน 16 บ่อ บ่อเพาะพันธุ์กุ้งทะเลขนาด 12 ลบ.ม. จำนวน 10 บ่อ บ่ออนุบาลขนาด 30 ลบ.ม. จำนวน 5 บ่อ
1.3 โรงทหารที่ 3 ตั้งอยู่ที่ ต.ไม้ขาว อ.ละวง จ.ภูเก็ต มีพื้นที่สำหรับเป็นโรงอนุบาลยุ่งทะเลทั้งสิ้น 800 ตร.ม. ประกอบด้วย บ่ออนุบาลกลุ่ม ขนาด 18 ลบ.ม. จำนวน 16 บ่อ, บ่อทะเลแครงตอนขนาด 12 ลบ.ม. จำนวน 4 บ่อ และบ่อพักน้ำ ขนาด 20 ลบ.ม. จำนวน 3 บ่อ

- ปริมาณน้ำและสิ่งตั้งในบ่ออนุบาล 14 ลบ.ม. ปล่อยนกยูงพืช 100,000 ตัว/บ่อ,บ่อ 1 บ่อ.
- ระยะสุทธิที่ให้küลลิโกร์และอาหารเสริมเป็นอาหาร
- ระยะโมจิช์, ให้ก่อนที่จะจับ,อาหารสั้นๆ จุ๊บ,ไข่กลางแห้งสุก และยาร์ทีมิ่งเป็นอาหาร
- ระยะโพสต์การ์, ให้อาร์ทีมิ่ง,อาหารสั้นๆ จุ๊บ,ไข่แดง และอาหารเสริมเป็นอาหาร
- เดือนน้ำในบ่ออนุบาลเมื่อเข้าสู่ระยะโมจิช์ 3 เดือนหลังแนะนำเมื่อเข้าสู่ระยะโพสต์การ์ 5 เดือนนับตั้งแต่เดือนที่ 3 เดือน ได้ผลดีที่สุดเมื่อเข้าสู่ระยะโมจิช์ 5 ที่พิสัย ให้ไข่ในบ่ออนุบาลตั้งแต่เดือนแรกจนถึงเดือนที่ 6 เดือน และเดือนที่ 6 เดือนไว้ให้เป็นการการ์คิ้นแบบที่ไร้

2. การเตรียมอุปกรณ์และวิธีดำเนินการ

เก็บตัวอย่างนั้นที่จากโรงทหารที่ 3 แห่ง แต่ละ 1 ครั้ง โดยในแต่ละครั้งที่เก็บตัวอย่างนั้น จะทำการเก็บจำนวน 3 บ่อ บ่อละ 3 ขั้น แต่ละครึ่งไม่เกิน 1 ชั่วโมง 2 ครั้ง โดยเท่าการเก็บตัวอย่างน้ำในช่วงของการปล่อยน้ำที่สั้นศิลป์การขับและบรรจุกลุ่ม, จุ๊บไข่แดงแต่เดือนนี้ที่เก็บที่ได้ออกมา ให้เป็นความขันซึ่งของรายธาตุของสูงสุด.

ละเอียดการเก็บตัวอย่างน้ำจากบ่อในระยะทะลุมน้ำออก

- น้ำตัวอย่างนั้นมาวิเคราะห์ที่ตัวอย่างที่ตั้งไว้ต่ำ ATAGO Rุ่น S/Milli-E.
- pH ได้โดยวิธี Electrometric method ด้วยเครื่องวัดความเป็นกรด-ด่างแบบดิลูซ ยึดที่ Accumet model 50
- Alkalinity โดยวิธี Potentiometer titration to pre-selection pH (APHA, AWWA and WPCF, 1980)
- DO โดยวิธี Azide modification Winkler method (APHA, AWWA and WPCF, 1980)
- BODs โดยวิธี Azide modification ที่ 20°C/5 วัน ได้โดยใช้ Synthetic seawater (Strickland and Parsons, 1972)
- Nitrite โดยวิธี Diazotization method (Strickland and Parsons, 1972)
- Nitrate โดยวิธี Cu-Cd Reduction method (Strickland and Parsons, 1972)
- Orthophosphate ได้โดยวิธี Ascorbic acid method (Strickland and Parsons, 1972)
- Total ammonia ได้โดยวิธี Modified indophenol blue method (Sasaki and Sawada, 1980)
- Total phosphorus โดยวิธี Acid persulfate digestion ascorbic acid method (APHA, AWWA and WPCF, 1980)
 - Total nitrogen ซึ่งประกอบด้วย
 Total dissolved nitrogen โดยวิธี Persulfate digestion (Koroleff, 1983)
 Particulate nitrogen โดยวิธี กรองตอกซุกแซมออกบนแผ่นกรองไห้แก้วขามกลางกรอง 0.7 ไมโครเมตร และวิเคราะห์ด้วย Nitrogen analyzer
 - Suspended Solids โดยวิธี กรองตอกซุกแซมออกบนแผ่นกรองไห้แก้วขามกลางกรอง 0.45 ไมโครเมตร (APHA, AWWA and WPCF, 1980)
 - Total Vibrio spp. โดยวิธี Spread plate บนอุณหภูมิ 30°C เป็นเวลา 24 ชั่วโมง (APHA, AWWA and WPCF, 1980)

3. การเก็บและวิเคราะห์ข้อมูล

เก็บรวบรวมข้อมูลตัวแปรตลอดพื้นที่และแต่ละค่า มีผลต่อผิวสุขภาพ ติดสุส ติดสุด และติดแสง และเปลี่ยนแปลงตามแต่ละการทดลองทั้ง 3 ต่างกับวิธี ANOVA และวิเคราะห์ความแตกต่างระหว่างค่าเฉลี่ยของข้อมูลในแต่ละเงื่อนไขเดียวกันวิธี Duncan’s new multiple range test โดยใช้โปรแกรมสำหรับรุ่น SPSS for Windows Versions 10.

ผลการศึกษา

1. คุณภาพน้ำที่ส่งมาจากโรงภาพและอนุมานเกี่ยวก่อ ที่ 1 (ตารางที่ 1)

ผลการศึกษาคุณภาพน้ำที่ส่งมาจากโรงภาพที่ 1 มีความเย็นอยู่ในช่วง 25.0-33.0 % เฉลี่ย 29.6 %, pH อยู่ในช่วง 7.73-7.92 เฉลี่ย 7.84, Alkalinity อยู่ในช่วง 107.0-124.8 mg/l เฉลี่ย 117.8 mg/l, DO อยู่ในช่วง 6.10-6.70 mg/l เฉลี่ย 6.46 mg/l, BOD, อยู่ในช่วง 8.60-10.70 mg/l เฉลี่ย 9.99 mg/l, Total ammonia อยู่ในช่วง 0.8558-2.1273 mg N/l เฉลี่ย 1.3883 mg N/l, Nitrite อยู่ในช่วง 0.0052-0.4991 mg N/l เฉลี่ย 0.2811 mg N/l, Nitrate อยู่ในช่วง 0.0131-0.0354 mg N/l เฉลี่ย 0.0269 mg N/l, Orthophosphate อยู่ในช่วง 0.2117-0.9280 mg P/l เฉลี่ย 0.4179 mg P/l, Total phosphorus อยู่ในช่วง 0.2391-0.9750 mg P/l เฉลี่ย 0.4506 mg P/l, Total Nitrogen อยู่ในช่วง 1.3229-2.1774 mg N/l เฉลี่ย 1.7504 mg N/l, Suspended solids อยู่ในช่วง 69.75-94.37 mg/l เฉลี่ย 83.05 mg/l และ จำนวนเชื้อ Vibrio spp. อยู่ในช่วง 32-4,950 CFU/ml เฉลี่ย 1,718 CFU/ml

2. คุณภาพน้ำที่ส่งมาจากโรงภาพและอนุมานเกี่ยวก่อ ที่ 2 (ตารางที่ 1)

ผลการศึกษาคุณภาพน้ำที่ส่งมาจากโรงภาพที่ 2 มีความเย็นอยู่ในช่วง 13.0-33.0 % เฉลี่ย 24.4 %, pH อยู่ในช่วง 7.55-8.26 เฉลี่ย 7.96, Alkalinity อยู่ในช่วง 109.0-124.0 mg/l เฉลี่ย 117.5 mg/l, DO อยู่
น้ำช่วง 5.00-6.40 mg/l เหลี่ยง 5.60 mg/l, BOD₅ อยู่ในช่วง 8.85-9.90 mg/l เหลี่ยง 9.49 mg/l, Total ammonia อยู่ในช่วง 0.5984-1.6157 mg N/l เหลี่ยง 1.2389 mg N/l, Nitrite อยู่ในช่วง 0.0029-0.0056 mg N/l เหลี่ยง 0.0045 mg N/l, Nitrate อยู่ในช่วง 0.0685-0.0946 mg N/l เหลี่ยง 0.0802 mg N/l, Orthophosphate อยู่ในช่วง 0.1553-0.4664 mg P/l เหลี่ยง 0.2999 mg P/l, Total phosphorus อยู่ในช่วง 0.2610-0.7904 mg P/l เหลี่ยง 0.5381 mg P/l, Total Nitrogen อยู่ในช่วง 0.9740-1.8940 mg N/l เหลี่ยง 1.5104 mg N/l, Suspended solids อยู่ในช่วง 25.63-70.83 mg/l เหลี่ยง 48.77 mg/l และ จำนวนเชื้อ Vibrio spp. อยู่ในช่วง 10-3,340 CFU/ml เหลี่ยง 1,645 CFU/ml

3. คุณภาพน้ำที่มาจากโรงเพาะและอนุรักษ์สัตว์ทะเลพิษณุโลกที่ 3 (ตารางที่ 1)

ผลการศึกษาคุณภาพน้ำที่มาจากโรงเพาะและอนุรักษ์สัตว์ทะเลพิษณุโลกที่ 3 มีความคิดอยู่ในช่วง 12.0-28.0 % เหลี่ยง 29.0 %, pH อยู่ในช่วง 8.06-8.21 เหลี่ยง 8.14, Alkalinity อยู่ในช่วง 136.0-173.0 mg/l เหลี่ยง 154.3 mg/l, DO อยู่ในช่วง 5.90-6.50 mg/l เหลี่ยง 6.35 mg/l, BOD₅ อยู่ในช่วง 10.25-10.89 mg/l เหลี่ยง 10.51 mg/l, Total ammonia อยู่ในช่วง 0.2767-2.8294 mg N/l เหลี่ยง 1.1669 mg N/l, Nitrate อยู่ในช่วง 0.1114-0.9489 mg N/l เหลี่ยง 0.6389 mg N/l, Orthophosphate อยู่ในช่วง 0.4132-0.5427 mg P/l เหลี่ยง 0.4782 mg P/l, Total phosphorus อยู่ในช่วง 0.7962-0.9254 mg P/l เหลี่ยง 0.8588 mg P/l, Total Nitrogen อยู่ในช่วง 2.1973-3.7094 mg N/l เหลี่ยง 2.8106 mg N/l, Suspended solids อยู่ในช่วง 51.25-76.28 mg/l เหลี่ยง 66.23 mg/l และ จำนวนเชื้อ Vibrio spp. อยู่ในช่วง 2,460-10,000 CFU/ml เหลี่ยง 6,230 CFU/ml

4. การเปรียบเทียบคุณภาพของน้ำที่มาจากโรงเพาะและอนุรักษ์สัตว์ทะเลพิษณุโลกที่ 1, โรงเพาะสัตว์ทะเลพิษณุโลกที่ 2 และโรงเพาะสัตว์ทะเลพิษณุโลกที่ 3

ในการวิเคราะห์ความแตกต่างระหว่างค่าคลื่นคุณภาพของน้ำที่มาจากโรงเพาะและอนุรักษ์สัตว์ทะเลพิษณุโลกที่ 1, 2 และ 3 ด้วยวิธี Duncan' new multiple range test พบว่า

- คำสั่งชื่อของความเข้ม, pH, BOD₅, Total ammonia, Orthophosphate, Total phosphorus และ Total Vibrio spp. ของน้ำที่มาจากโรงเพาะที่ 3 น่าจะไม่มีความแตกต่างกันทางสถิติ (P>0.05)
- คำสั่งชื่อของ Alkalinity, nitrate และ Total nitrogen ของน้ำที่มาจากโรงเพาะที่ 1 และ 2 ไม่มีความแตกต่างกันทางสถิติ (P>0.05) แต่เมื่อความแตกต่างอย่างมีนัยสำคัญทางสถิติ (P<0.05) กับโรงเพาะที่ 3
- คำสั่งชื่อของ DO และSuspended solids ของน้ำที่มาจากโรงเพาะให้ ที่ 1 มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ (P<0.05) กับโรงเพาะที่ 2 ส่วนคำสั่งชื่อระหว่างโรงเพาะที่ 1 กับ 3 และโรงเพาะที่ 2 กับ 3 ไม่มีความแตกต่างกันทางสถิติ (P>0.05)
- คำสั่งชื่อของ Nitrite ของน้ำที่มาจากโรงเพาะที่ 2 มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ (P<0.05) กับโรงเพาะที่ 3 ส่วนคำสั่งชื่อระหว่างโรงเพาะที่ 1 กับ 2 และโรงเพาะที่ 1 กับ 3 ไม่มีความแตกต่างกันทางสถิติ (P>0.05)
ตารางที่ 1 ค่าสาระ-สูงสุดและค่าเฉลี่ยของคุณภาพน้ำที่มาจากโรงเรียนและอนุบาลถิ่นทะเล จังหวัดระยอง

<table>
<thead>
<tr>
<th>คุณภาพน้ำ</th>
<th>โรงเรียนพื้นที่ที่ 1</th>
<th>โรงเรียนพื้นที่ที่ 2</th>
<th>โรงเรียนพื้นที่ที่ 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinity (‰)</td>
<td>25.0 - 33.0</td>
<td>13.0 - 33.0</td>
<td>12.0 - 28.0</td>
</tr>
<tr>
<td>เปลี่ยน±SD</td>
<td>29.6 ± 4.2</td>
<td>24.4 ± 10.0</td>
<td>20.0 ± 7.7</td>
</tr>
<tr>
<td>pH</td>
<td>7.73 - 7.92</td>
<td>7.55 - 8.26</td>
<td>8.06 - 8.21</td>
</tr>
<tr>
<td>เปลี่ยน±SD</td>
<td>7.84 ± 0.07</td>
<td>7.96 ± 0.27</td>
<td>8.14 ± 0.06</td>
</tr>
<tr>
<td>Alkalinity (mg/l)</td>
<td>107.0 - 124.8</td>
<td>109.0 - 124.0</td>
<td>136.0 - 173.0</td>
</tr>
<tr>
<td>เปลี่ยน±SD</td>
<td>117.8 ± 8.6</td>
<td>117.5 ± 5.8</td>
<td>154.3 ± 20.5</td>
</tr>
<tr>
<td>DO (mg/l)</td>
<td>6.10 - 6.70</td>
<td>5.00 - 6.40</td>
<td>5.90 - 6.50</td>
</tr>
<tr>
<td>เปลี่ยน±SD</td>
<td>6.46 ± 0.29</td>
<td>5.60 ± 0.65</td>
<td>6.35 ± 0.30</td>
</tr>
<tr>
<td>BOD₅ (mg/l)</td>
<td>8.60 - 10.70</td>
<td>8.85 - 9.90</td>
<td>10.25 - 10.89</td>
</tr>
<tr>
<td>เปลี่ยน±SD</td>
<td>9.99 ± 0.84</td>
<td>9.49 ± 0.44</td>
<td>10.51 ± 0.27</td>
</tr>
<tr>
<td>Total ammonia (mg N/l)</td>
<td>0.8558 - 2.1273</td>
<td>0.5984 - 1.6157</td>
<td>0.2767 - 2.8294</td>
</tr>
<tr>
<td>เปลี่ยน±SD</td>
<td>1.3883 ± 0.5528</td>
<td>1.2389 ± 0.4172</td>
<td>1.1669 ± 1.1661</td>
</tr>
<tr>
<td>Nitrite (mg N/l)</td>
<td>0.0052 - 0.4991</td>
<td>0.0029 - 0.0056</td>
<td>0.1114 - 0.9489</td>
</tr>
<tr>
<td>เปลี่ยน±SD</td>
<td>0.2811 ± 0.0498</td>
<td>0.0045 ± 0.0013</td>
<td>0.6389 ± 0.3681</td>
</tr>
<tr>
<td>Nitrate (mg N/l)</td>
<td>0.0131 - 0.0954</td>
<td>0.0685 - 0.0946</td>
<td>0.0193 - 0.7526</td>
</tr>
<tr>
<td>เปลี่ยน±SD</td>
<td>0.0269 ± 0.0085</td>
<td>0.0802 ± 0.0103</td>
<td>0.5354 ± 0.3493</td>
</tr>
<tr>
<td>Orthophosphate (mg P/l)</td>
<td>0.2117 - 0.9280</td>
<td>0.1553 - 0.4664</td>
<td>0.4132 - 0.5427</td>
</tr>
<tr>
<td>เปลี่ยน±SD</td>
<td>0.4179 ± 0.2986</td>
<td>0.2999 ± 0.1167</td>
<td>0.4782 ± 0.0631</td>
</tr>
<tr>
<td>Total phosphorus (mg P/l)</td>
<td>0.2391 - 0.9750</td>
<td>0.2610 - 0.7994</td>
<td>0.7962 - 0.9524</td>
</tr>
<tr>
<td>เปลี่ยน±SD</td>
<td>0.4506 ± 0.3119</td>
<td>0.5381 ± 0.2014</td>
<td>0.8588 ± 0.0537</td>
</tr>
<tr>
<td>Total nitrogen (mg N/l)</td>
<td>1.3229 - 2.1774</td>
<td>0.9740 - 1.8940</td>
<td>2.1973 - 3.7094</td>
</tr>
<tr>
<td>เปลี่ยน±SD</td>
<td>1.7504 ± 0.3411</td>
<td>1.5104 ± 0.3857</td>
<td>2.8106 ± 0.6444</td>
</tr>
<tr>
<td>Suspended solids (mg/l)</td>
<td>69.75 - 94.37</td>
<td>25.63 - 70.83</td>
<td>51.25 - 76.28</td>
</tr>
<tr>
<td>เปลี่ยน±SD</td>
<td>83.05 ± 8.82</td>
<td>48.77 ± 21.69</td>
<td>66.23 ± 10.61</td>
</tr>
<tr>
<td>Total Vibrio spp. (CFU/ml)</td>
<td>32 - 4.950</td>
<td>10 - 3.340</td>
<td>2.460 - 10.000</td>
</tr>
<tr>
<td>เปลี่ยน±SD</td>
<td>1.718 ± 1.978</td>
<td>1.645 ± 1.872</td>
<td>6.230 ± 5.332</td>
</tr>
</tbody>
</table>

* ตัวอักษรอักขระถูกเอามาใช้ในแถวเดียวกันที่ต่างกัน หมายถึง มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ (P<0.05)
ตารางที่ 2 ปริมาณสารอาหารและของเสียที่ปล่อยออกมาในน้ำที่จากโรงพยาบาลที่ 1, 2 และ 3 (กรัม/ลบ.ม.)

<table>
<thead>
<tr>
<th>参数</th>
<th>โรงพยาบาลที่ 1</th>
<th>โรงพยาบาลที่ 2</th>
<th>โรงพยาบาลที่ 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ปริมาณน้ำทิ้ง (กรัม/ลบ.ม.)</td>
<td>12</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>สารประกอบในไantz</td>
<td>1.75</td>
<td>1.51</td>
<td>2.81</td>
</tr>
<tr>
<td>สารประกอบฟอสฟอรัส</td>
<td>0.45</td>
<td>0.54</td>
<td>0.86</td>
</tr>
<tr>
<td>ของเสียในรูปโปรดิโอซิค</td>
<td>9.90</td>
<td>9.49</td>
<td>10.51</td>
</tr>
<tr>
<td>ตะกอนแขวนลอย</td>
<td>83.05</td>
<td>48.77</td>
<td>66.23</td>
</tr>
</tbody>
</table>

สูตรการคำนวณ

ปริมาณสารอาหารที่ออกมาในน้ำทิ้ง (กรัม/ลบ.ม.) = ค่าเฉลี่ยดั้งนั้นปริมาณน้ำทิ้ง (มม.) x ปริมาณน้ำทิ้ง (1 ลบ.ม.)

กราฟที่ 1 ปริมาณสารในรูปโปรดิโอซิค (a), สารประกอบในไantz (b), สารประกอบฟอสฟอรัส (c) และตะกอนแขวนลอย (d) ที่ปล่อยออกมาจากน้ำทิ้งจากโรงพยาบาล ในขั้นตอนการจับถุง ต่ำรูนต่อบ่อ
ความเค็ม (Salinity)

ปีณัฐที่ความเค็มมีปานกลางระหว่าง 3 แปลง ทั้งหมดมีค่าปานกลางอยู่ที่ 8.14; 154.3 mg/l.

ความเป็นกรด-ด่าง (pH) และความเป็นเค็ม (Alkalinity)

ค่าความเป็นกรด-ด่างและความเป็นเค็มของทะเลที่ 3 มีค่าสูงถึง 8.14 และ 154.3 mg/l.

ออกซิเจนและลายน้ำ (Dissolved Oxygen)

ปริมาณออกซิเจนและลายน้ำที่วัดได้จากทั้ง 3 แปลงทะเลมีปานกลางอยู่ที่ 4.0 แตกต่าง.

มีโอเดน (BOD3)

ค่ามีโอเดนปานกลางอยู่ที่ 4.0 แต่เกิดขึ้นมากในทะเลที่ 3.

การให้ไทด้ผลิตภัณฑ์สุญญามืดมีชีวิต แต่อย่างไรก็ตาม คือป้องกันซึ้งสุดที่มิได้สูงกว่าค่ามาตรฐานน้ำทังจากวอคกอคลิส์สัตว์น้ำทะเล (กรมควบคุมมณฑลพิษณุโลก, 2544) จะทำให้ลดไว้ไม่เกิน 20 มก./ลิตร เมื่อว่าปริมาณของสีที่ปล่อยออกมาในรูปของ BOD5 จะค่าที่ไม่สูงมากก แต่ คุณ และพุทธ (2535) ได้ทบทวน พบว่า ปริมาณน้ำทังต้องต้น ปริมาณ ไทด้ผลิตภัณฑ์สุญญามืดมีปริมาณมากขึ้นตามขนาดพื้นที่บ่อที่เพิ่มขึ้น ซึ่งสอดคล้องกับผลการศึกษาที่พบว่า โรงเทพาที่ที่ 2 มีปริมาณน้ำทังต้องต้นสูงที่สุด ทำให้มีปริมาณของเดือดในรูปไทด้ผลิตภัณฑ์ต้องต้นสูงกว่าอีก 2 ฟอร์ม

แอมโมเนียรวม (Total ammonia), ไทด้กรด (Nitrite), ไทด้กรด (Nitrate) และไทด้กราไฟกรม (Total nitrogen)

แอมโมเนียเป็นผลิตภัณฑ์จากการย่อยสลายโปรตีนและสารอินทรีย์ รวมทั้งสัตว์และพืช ได้จากไทด้ผลิตภัณฑ์ในกระบวนการ Ammonification (สมบูรณ์, 2539) และจะเปลี่ยนรูปไปเป็นไทด้กรด และไทด้กรด โดยกระบวนการ Nitrification เพื่อมีพลังงานสำหรับการแบคทีียร์ (พุทธและพืช, 2543) และจากผลการศึกษาปริมาณแอมโมเนีย พบว่าโรงเทพาที่ที่ 3 มีถึง 1.1 มก./ลิตร ตรงตามที่ (กรมควบคุมมณฑลพิษณุโลก, 2544) และความเห็น ปริมาณไทด้กรด, ไทด้กรด และไทด้กราไฟกรมในโรงเทพาที่ 3 มีถูกต้องกว่าอีก 2 ฟอร์ม อย่างเห็นได้ชัด ซึ่งสาเหตุที่น้ำที่มีค่าสูงกว่าค่ามาตรฐานน้ำทังจากการย้อมสีที่บ่อสารเคมีที่มีอยู่ไม่เกิน 1.1 มก./ลิตร ตรงตามที่ (กรมควบคุมมณฑลพิษณุโลก, 2544) และความเห็น

เพาะว่าค่าเป็นที่ระดับที่น้ำที่มีค่าสูงกว่าค่ามาตรฐานน้ำที่บ่อสารเคมีที่มีอยู่ไม่เกิน 1.1 มก./ลิตร ตรงตามที่ (กรมควบคุมมณฑลพิษณุโลก, 2544) และความเห็น
สารแขวนลอย (Suspended solids)

สารแขวนลอยในน้ำของ-management เพื่อให้รักษาสัตว์ประมณ์ที่มีอยู่ในน้ำและส่ง
ขับเคลื่อนของสัตว์ ป้องกันการจัดการให้สารแขวนลอยสูงกว่าที่ปรับได้เป็นแผน (Flake) กลั่นกัน ซึ่งสัตว์หนึ่งมาจาก
แขวนลอยของสารแขวนลอยที่ไหลออกและตกค้างที่เครื่องที่ออกก้น เนื่องจากในโรงทัพพิทที่ 1 ให้เหตุผลค่อน
เป็นไปในการปรับปรุงที่สูงกว่าอีก 2 ฟอร์ม ที่ทำให้สารแขวนลอยตกค้างในน้ำ จากโรงทัพพิทที่ 1 ด้วยภูมิภูมิ
ปริมาณที่เก็บกลับค่าน้ำสารแขวนลอยที่ตกค้างที่เครื่องที่ออกก้น (กรมควบคุมมลพิษ, 2544) และอีก 2 ฟอร์ม
ที่มีตัวอย่างต่างๆ เก็บกลับค่าน้ำสารแขวนลอยที่ตกค้างในน้ำที่ต่ำกว่าอีก 2 ฟอร์ม ซึ่งนำไปสู่การคิดถึง ที่ไหล
กลับของสารแขวนลอยที่ตกค้าง และผล (2540) ที่พบว่าฟอร์มนี้มีสารแขวนลอยน้อย ทำให้มีปริมาณน้ำที่ตกค้าง
แท้จริงซึ่งเนื่องจากสารแขวนลอยในน้ำที่ตกค้างที่กลับกลับให้สารแขวนลอยที่ตกค้างในน้ำที่ต่ำกว่าอีก 2 ฟอร์ม

Total Vibrio spp.

ปริมาณการเปลี่ยนแปลงของแบคทีเรียสุนัขวิบัตรี ในโรงทัพพิทที่ 3 โรงทัพพิทที่ 2 และในการเปลี่ยนแปลงของน้ำในช่วง 10-10,000 CFU/ml ซึ่งอยู่ในปริมาณการเปลี่ยนแปลงน้อยที่สุด การคัดเลือกโรงทัพพิทที่ 2 ที่มีการเปลี่ยนแปลงน้ำ
อย่างสม่ำเสมอ ทำให้มีปริมาณการเปลี่ยนแปลงของแบคทีเรียสุนัขวิบัตรี 2 ฟอร์ม ซึ่งในทางกลับกัน ที่ทดลอง
กลับที่สารบุตรของสัตว์มีผล และผล (2540) ที่พบว่าฟอร์มนี้มีสารแขวนลอยน้อย ทำให้มีปริมาณน้ำที่ตกค้าง
แท้จริงซึ่งเนื่องจากสารแขวนลอยของสารบุตรที่ตกค้างดังกล่าวมีสารเดียวสารแขวนลอยที่ตกค้างที่กลับกลับให้สาร
แขวนลอยที่ตกค้างในน้ำที่ต่ำกว่าอีก 2 ฟอร์ม

ในการศึกษาครั้งนี้ทำให้ทราบว่ามีตัวแปรคุณสมบัตินี้ที่จำเป็นต้องมีการปราบค่อนปล่อยของสู
แหล่งน้ำธรรมชาติ โดยเฉพาะลำน้ำเนื่องจากการเกษตรที่ 3 ฟอร์มมีตัวแปรคุณสมบัตินี้ ซึ่งในลำน้ำธรรมชาติ
แหล่งน้ำธรรมชาติ โดยเฉพาะลำน้ำเนื่องจากการเกษตรที่ 3 ฟอร์มมีตัวแปรคุณสมบัตินี้ (กรมควบคุมมลพิษ, 2544) โดยไม่พักการออกจากใบไม้พัด
ลง ซึ่งมีการสะสมสูงระหว่างการตกค้างของอิควิก้า โดยการใช้เครื่องชุดนี้บวกที่แตกต่าง (Spotte, 1970; ดุลยสาร, 2539) จากนั้นก็ใช้วิธีการ
การของใช้เวลาและพื้นที่ หรือฝักท่อนก พื้นที่เก็บเกี่ยวสารแขวนลอย (Spotte, 1970; ดุลยสาร, 2539) พบว่าสารแขวนลอยมีไนโตรเจนและ
สารแขวนลอยฟอร์โมส ซึ่งในสารที่เก็บเกี่ยวอีกครั้ง (2540) พบว่าสารแขวนลอยมีไนโตรเจนและ
และ 59.71% ตามลำดับ และจากการศึกษาของ Spotte (1970; ตีพิมพ์ คณะกรรมการ, 2539) พบว่าการใช้ activated carbon หรืออันไม้ ให้ประสิทธิภาพต่ำในการลดสารแขวนลอย และซินทำซิสต์ที่ละลายในช่วงกระดินอิมโมโน, กระชะมIRE ในช่วงที่สูงกว่ามูลรูปของน้ำ

ดังนั้น จากผลการศึกษา วิธีแก่ทางในการจัดระบบปั๊มน้ำในเขตเล็กในโรงเรียนทีคและอนุบาลทุกๆ ใดที่ที่มีช่องลดความจริงจะรับปริมาณน้ำที่สูงสุดในแต่ละครั้งได้ และยังปั๊มน้ำพิจารณาดูถึง

ของแห้งเพื่อให้สัมผัสกลไกของจุดต่ำสุดของน้ำ 2 บ่อยที่มีต่ำสุดจึงถูกก๊าซ
โดย ในปีที่ 1 จะรอบน้ำที่จุดจากระบบ และจัดระบบการกระจายและต้นไม้ที่ก็จัดสารแขวนลอยในขั้น
แรกและนั้นจะก่อนที่สูงสุดที่ 2 ซึ่งในปีนี้จะเริ่มปลาย, สำหรับเครื่องฟื้นต้นที่ทันความติดให้ก็ต้องทำการบินคั้นและถูกก็
ผลติดน้ำขาต่ำๆ ออกไป

เอกสารอ้างอิง

กรมควบคุมมณฑล. 2544. การจัดการและแก้ไขปัญหาการเพาะเลี้ยงพืชน้ำชายฝั่ง. กองจัดการคุมภาพที่
กรมควบคุมมณฑล, กระทรวงวิทยาศาสตร์ เกษตรนิยมและสิ่งแวดล้อม. 14 หน้า.

กรคชัย สารานิคมภูผัก. 2544. ประกาศกระทรวงทรัพยากร ชุมชนสัณฐานในพื้นที่จังหวัดภูเก็ตจังหวัดภูเก็ต. บรรหาร:
ประเด็น 54(6) : 521-524.

คณะกรรมการสิ่งแวดล้อมแห่งชาติ. 2537. คณะกรมสารสนเทศสุจริตภาพประจำปี. ประกาศคณะกรรมการ
สิ่งแวดล้อมแห่งชาติ ฉบับที่ 7 ข้อความความในพระราชบัญญัติ สิ่งเสียNAME และรักษาสุขาภิบาลสิ่งแวด
ล้อมแห่งชาติ พ.ศ. 2535. ที่มั่นคง ราชการจังหวัดภูเก็ต 11 ตุลาคม 24 ภูเก็ตพันธ์ 2537.

ภานิติ โชติชัย, จิรพันธุ์ ตันวีระ. 2535. การทดลองใช้หอแสลงสูญและสระการจำแนกเพื่อทำน้ำที่ท่าง
ขีดสภาพการเปลี่ยนผู้สุขภาพแบบพืชมน. เอกสารวิชาการ ฉบับที่ 6/2535, สถาบันวิจัยการเพาะเลี้ยง
สัตว์น้ำชายฝั่ง, กรมประมง. 35 หน้า.

ภานิติ โชติชัย และพุทธิภัณฑ์ ตันวีระ. 2535. คุณสมบัติและปริมาณน้ำที่สูงสุดของสุขภาพแบบพืชมน
อันธวโรไนจังหวัดสงขลา. สถาบันวิจัยการเพาะเลี้ยงสัตว์น้ำชายฝั่ง, กรมประมง. 26 หน้า.

ภานิติ โชติชัย, ดีริ, ทุกข์ มาเธ, ของทุกข์ ปรีดีพันธ์, ทุกข์ ทองแสงจันทร์ และคุณศีรษ ตันวีระ. 2537.
คุณภาพน้ำที่ก่อการเปลี่ยนสัตว์น้ำชายฝั่ง, ความเป็นผลสิน ที่การวิเคราะห์. สถาบันวิจัยการเพาะ
เลี้ยงสัตว์น้ำชายฝั่ง, กรมประมง. 110 หน้า.

ขวัญ ผีระวิจิตร, นฤ มานะวิเวช, และทุกข์มาเธ. 2535. การทดลองเลี้ยงผู้สุขภาพยุคถ้าใช้ทรัพยากร
ตุกแต้ม โดยใช้ทรัพยากรจากโรงเรียนทีค. เอกสารวิชาการ ฉบับที่ 11/2535, สถาบันวิจัยการเพาะเลี้ยง
สัตว์น้ำชายฝั่ง, กรมประมง. 13 หน้า.
พุธ ส่องแสงจันตา และยุทธ บริบาลมุบดุ. 2538. ผลของการอีกครั้งซ้ำซ้อนกันในรูปแบบ อนุรักษ์รูปแบบต่าง ๆ ที่ผลการเปลี่ยนแปลงสารประกอบในธรรมชาติ อินทรีย์รูปแบบรวม และปริมาณตลอดที่สิ้นสุด ออกของน้ำทิ้งจากปล่อยสิ่งของสู่น้ำด้วยด้านพื้นผิว. รายงานเข้ามหาวิทยาลัยราชภัฏพิษณุโลก 2538, กรรมประมวล. หน้า 663-667.

พุธ ส่องแสงจันตา, สีริ, ทุกสิ่งทั้งหมด, ข้าวบ ยิ่งกว่า สมุทรปราการ และพัฒนาการ. 2543. การบันทึกน้ำจากปล่อยสิ่งของสู่น้ำด้วยด้านพื้นผิว ได้ใช้บันทึกชั่วคราวและระบบที่ด้วยกระดาษ. สามารถวิเคราะห์ จับปั้บริการ 2/2543, สูญเสียและพัฒนาการทดลองสิ่งของสู่น้ำด้วยด้านพื้นผิว, สถาบันวิจัยและพัฒนาการวิทยาศาสตร์แห่งประเทศไทย, กรรมประมวล. 12 หน้า.

พิษณุโลก บุญมี หลักชัย และไพรศ อนันต์. 2540. ปรับปรุงแบบที่ใช้ระบบรักษาและวิธีปรับปรุงฟื้นฟูน้ำทะเลด้านพื้นผิว และในธรรมชาติจังหวัดสมุทรสงคราม. เอกสารวิชาการ ฉบับที่ 36/2540, ศูนย์พัฒนาการเกษตรสัตว์น้ำราชพัสดุ, กรรมประมวล. 19 หน้า.

สมชาย เตริมวิริสิทธิ์. 2539, เอกสารตานุการ วิชา 530-441 การจัดการพื้นที่น้ำ. สภากาชาดก ชลยุทธ หนานเหมินติง, หน้า 157 หน้า.

อุปกรณ์ ภูษา อนันต์สม. และสาขาวิชาการ. 2540. การทดลองสิ่งของสู่น้ำด้วยด้านพื้นผิวโดยการบันทึกชั่วคราว. สถาบันวิจัย กองทะเบียนสิ่งของสู่น้ำด้วยด้านพื้นผิว 2538-2542, กลุ่มวิชาการ, กองทะเบียนสิ่งของสู่น้ำด้วยด้านพื้นผิว, กรรมประมวล. 2543. หน้า 46.

American Public Health Association, American Water Works Association and Water Pollution Control Federation (APHA, AWWA and WPCF), 1980. Standard method for the examination of water and waste water. 15th ed.

ตารางมิติ

<table>
<thead>
<tr>
<th>สารมิติ</th>
<th>หน่วย</th>
<th>ค่าที่กำหนด</th>
<th>วิธีวิเคราะห์</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ค่าความเป็นกรด-ด่าง (pH)</td>
<td>-</td>
<td>6.9-9.0</td>
<td>เครื่อง pH-meter แบบ electrometric</td>
</tr>
<tr>
<td>2. ปิโตรดี (Biochemical Oxygen Demand)</td>
<td>มก./ล.</td>
<td>20</td>
<td>วิธี azide modification ที่ 20°C/5 วัน ไข่ไก่ synthetic seawater วงล้อสั่นแก้วขวดกลึงดูออก 1.2 ไมโครเมตร</td>
</tr>
<tr>
<td>3. สารแขวนลอย (Suspended solids)</td>
<td>มก./ล.</td>
<td>70</td>
<td>วิธี modified idophenol blue</td>
</tr>
<tr>
<td>4. แอมโมเนีย (NH₃-N)</td>
<td>มก.</td>
<td>1.1</td>
<td>วิธี ascorbic acid</td>
</tr>
<tr>
<td>5. ฟอสฟอรัสรวม (Total Phosphorus)</td>
<td>มก./ล.</td>
<td>0.4</td>
<td>วิธี methylene blue</td>
</tr>
<tr>
<td>6. ไฮโดรเจนซัลเฟต (H₂S)</td>
<td>มก./ล.</td>
<td>0.01</td>
<td>วิธี persulfate digestion</td>
</tr>
<tr>
<td>7. นิโอซิลลิเซียมรวม (Total Nitrogen)</td>
<td>มก./ล.</td>
<td>4.0</td>
<td>วิธี nitrogen analyzer</td>
</tr>
<tr>
<td>ก) นิโอซิลลิเซียมละลาย (Total dissolved nitrogen)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ข) นิโอซิลลิเซียมแขวนลอย (Particulate nitrogen)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>