Rearing of Spotted Babylon (*Babylonia areolata* Link, 1807) by Using Na$_2$CO$_3$ Control pH and Alkalinity

Surachart Chaweepack* Tidaporn Chaweepack and Varittha Nuphin
Chanthaburi Coastal Fisheries Research and Development Center

Abstract

Study on variation of water qualities by compared between spotted babylon (*Babylonia areolata* Link, 1807) rearing tanks and seabass (*Lates calcarifer* Bloch, 1790) tanks. After 48 hrs. we found that pH, alkalinity and calcium of spotted babylon tanks lower than seabass tanks with significant (P<0.05). Calcium in seabass tanks and control tanks were non significant (P>0.05). We expected that spotted babylon uptake of CaCO$_3$ from water which reflected to water buffer and reduction of pH. Other study was rearing spotted babylon with 5 density. After 24 hrs. the result shown that pH alkalinity and calcium were inversely with density of spotted babylon.

Experiment on rearing of spotted babylon by using Na$_2$CO$_3$ control pH and alkalinity in plastic tanks 60 days with 4 treatments 3 replications. Treatments 1 without spotted babylon (control). Treatments 2 without spotted babylon and added Na$_2$CO$_3$. Treatments 3 with 250 spotted babylon/tank. Treatments 4 with 250 spotted babylon/tank and added Na$_2$CO$_3$. Experimental resultsshowed that Na$_2$CO$_3$ capabled to control pH and alkalinity. The different of growth and survival rates of spotted babylon in treatments 3 and 4 were non significant (P>0.05). Spotted babylon which grown in water without Na$_2$CO$_3$ exhibited obvious signs of pitting on the apex of the shell and found mucosa with *Zoothamnium* sp. cover shell and shell colour were abnormal.

Key words: Spotted Babylon (*Babylonia areolata* Link, 1807), pH, alkalinity and Na$_2$CO$_3$

* Corresponding author : Moo 9 Tambon Bangkacha Muang District Chanthaburi Province 22000 Tel. 0 3945 7987 e-mail : chanfisheries@yahoo.com