Effects of stocking densities on the survival rates of blue swimming crab from zoea I to zoea IV, and from zoea IV to young crab (6-7 days after entering the crab stage) in fiber nursery tanks were investigated by performing 2 experiments. Experiment for each period of crab larvae comprised treatments of 3 replications.

Experiment 1, rearing of crab from zoea I-zoea IV at three stock densities of 50,000, 100,000 and 150,000 individuals/m³ yielded survival rates of 64.82±4.84, 51.50±1.32 and 22.93±6.35%, respectively. The survival rates of crab larvae at the three densities were significant differences (P<0.05). In the part of rearing zoea IV to young crab at 10,000, 20,000 and 30,000 individuals/m³ produced the survival rates of 55.50±7.13, 24.73±1.35 and 24.28±1.20%, respectively. The survival rate of young crab at the stock density of 10,000 individuals/m³ was significantly higher as compared with those at 20,000 and 30,000 individuals/m³ (P<0.05).

Experiment 2, in which zoea I at densities of 70,000, 100,000 and 130,000 individuals/m³ were cared, the survival rates were 70.78±4.96, 59.63±2.59 and 52.14±4.07%, respectively when they attained zoea IV stage. The survival rate of crab larvae at 70,000 individuals/m³ was significantly higher than those at 100,000 and 130,000 individuals/m³ (P<0.05). Rearing of crab from zoea IV to young crab at densities of 20,000, 25,000 and 30,000 individuals/m³ obtained the survival rates of 28.17±4.31, 21.48±2.09 and 13.81±0.57%, respectively. The survival rate of young crab at stock density of 20,000 individuals/m³ was significant difference from those at 25,000 and 30,000 individuals/m³ (P<0.05).

Key word : Young blue swimming crab, Stock density, Survival rate